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Summary. In this work, we search for the "simplest" complete surfaces of systems 
with three and four atoms, i.e. the minimal sets of critical points with their index, 
which are topologically consistent in the whole configuration space. Then we show 
the smallest change in the A2B2 system by requiring at least one stable "acetylene" 
configuration and one stable "vinylidene" configuration, like on the CE H  2 surface. 
Finally, we give complete sets of minima, saddle points and maxima obtained for 
C 2 H  2 with analytical potentials proposed in the literature and with a semi- 
empirical method at the CAS-CI level. 
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1 Introduction 

In chemistry, ab initio calculations and experimental data provide knowledge on 
certain aspects of potential surfaces: typically minima, saddle points and dissoci- 
ative configurations. 

However, in molecular dynamics the whole surface is required in analytical 
form. Therefore one builds an analytical expression fitting the previously known 
parts of the surface. The problem then is to control the quality of the analytical 
function in other huge regions. 

Random checks are unsatisfactory as soon as the system exceeds three 
atoms, but the location of the critical points of any index n (the number 
of imaginary frequencies or the number of strictly negative eigenvalues of 
the hessian) give a powerful summary of the fitted surface. This is undertaken 
with the help of optimization methods: pseudo-Newton (Davidon- 
Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanno) [1], gradient norm 
minimizer [2], chain method [3,4], and simulated annealing strategies 
[51. However, the search requires criteria of completion and help to rough 
location of "missing" critical points. This is the crucial point where master 
results from algebraic topology are of decisive help. 

In a preceding paper [6] whe have shown the usefulness of the Morse theory in 
various forms, checking topological consistency not only in symmetry-constrained 
cross sections but also in the whole configuration space. 



286 M. R6rat et al. 

The aim of the following sections is to recall the Morse inequalities linking the 
numbers of critical points with index n, to find the coherent "germs" of an artificial 
surface without and with restrictions (for example by fixing minima on the poten- 
tial surface), and to give a topological analysis of potentials proposed in the 
literature for the C2H2 molecule [7-9]. Results obtained with the semi-empirical 
M N D O C  + CAS-CI method [10] are also given. 

2 The equivariant Morse inequalities 

Let V(ql . . . .  , q3N) be the morsified function 1 of a set of N nuclei with cartesian 
coordinates qi and masses #~. The configuration space (CS) is derived from N3N in 
the following way (see [6, 11-13]): 

• omission by excision of Dexcl. the set of configurations with two or more 
superimposed nuclei; 

• elimination by mapping of the three translational degrees of freedom; 

• elimination by quotient of the two or three rotational degrees of freedom. 

f o~3N\D ~N 0} and where SO(3) is the ThenCS = M/SO(3)withM = t~,, \ excl.,L,i=l#iqi = 

rotation group in ~3. 
Introducing Mn and ran, the numbers of critical points with index n for 

nonlinear and collinear configurations, respectively, the Morse theory takes the 
equivariant form on the whole configuration space CS: 

3 N - 6  ~ '  3 N -  5 ~, Mit~ + ~j=o mJ t~ ( 1 + 2 t 2 )  " ' ' ( l + ( N - 1 ) t  z) 
i=o 1 - -  t 2 - -  1 - -  t 2 + (1 + t)Q(t), (1) 

where Q(t) is a polynomial function with nonnegative coefficients. 
When restricting the study of the potential function to the linear plus planar 

configurations, the equivariant form of the Morse theory becomes on the planar 
configuration space CSP: 

2 N  - 3 2 N  - 3 

2 Y', M;t '+ ~ m)t j = ( l + 2 t ) . . . ( 1  + ( N - 1 ) t ) + ( l + t ) Q ' ( t ) .  (2) 
i = 0  j = 0  

M~ and m'n are the new numbers of critical points with index n for planar and 
collinear configurations, respectively, and Q'(t) is also a polynomial function with 
nonnegative coefficients. 

Because Q(t) and Q'(t) are polynomial functions with nonnegative coefficients, 
Eqs. (1) and (2) lead to the Morse inequalities in CS and CSP, respectively. For  
example, when N = 4, Eq. (1) leads to the following inequalities in CS: 

Mo + m o  f> 1 

M 1 - M o + r n l - m o > / -  1 

M 2  - -  M1 + Mo + m2 - -  ml + 2mo >~ 7 

1 A potential function belongs to the generic class of the so-called Morse functions when it turns out to 
be uniformly smooth and exhibits non-degenerate critical points, i.e. no zero eigenvalues of the hessian 
at a critical point. 
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M3 -- M2 + M1 - Mo + m3 - m2 + 2rnl - 2too ~> - 7 

M4 - M3 + M2 - M1 + Mo + m4 - m3 + 2m2 - 2mi + 3mo >~ 19 

M5 - -  M 4  q- Ma - -  M 2  q -  M 1  - -  Mo + m5 - m4 -]- 2ma 

- 2m2 + 3ml - 3too ~> - 19 

M 6  - M5  + M 4  -- M 3  + M 2  - -  M i  + M o  + m6 - m5 + 2m4 - 2m3 

+ 3m2 - 3ml + 4mo i> 31 

and to the equality: ( -1) (as-5)m3N_5 + . . .  + m 2 - -  m I q- m 0 = 4!/2. 
Still for N = 4, Eq. (2) leads to the inequalities in CSP: 

2Mb + mb ~> 1 

2M'~ - 2M~ + m'~ - m~ ~> 4 

2M~ -- 2 M ]  + 2Mb + m~ - m'~ + m~ 1> 2 

2M~ - 2M~ + 2 M ]  - 2Mb + m~ - m~ + m~ - m~/> - 2 
/ t t t t 2Mk - 2M~ + 2M~ - 2 M ]  + 2M~ + m4 - m3 + m 2  - -  ml + mo ~> 2 

2M~ - 2Mk + 2M~ - 2Mh + 2 M ]  - 2M~ + m~ - m~, 
/ t t ! 

+ m 3 -- m 2 -b m 1 -- m o = -- 2 

The right members  of  the inequalities depend on the value of N and are 
obtained with the help of Eqs. (1) and (2). 

More,  there are N ! / 2  linear configurat ion subspaces CSL for which Morse 
inequalities are 

m• -- m'k'- i +"  " " + (--  1)km~ >1 (--  1) k- 

The equality holds for k = N - 1. 

3 The simplest surfaces for three and four atoms systems 

F r o m  the last inequality of  Sect. 2, we saw that  the Morse theory predicts at least 
one critical point  in each of  the N ! / 2  linear configurat ion spaces CSL (rng ~> 1), 
these subspaces being separated by high energy barriers corresponding to config- 
urat ions with superimposed atoms. Then if all the a toms are different, there are at 
least N ! / 2  C~v critical points in the whole configurat ion space CS and CSP. More,  
the bending modes  of all these critical points lead to planar  configurations belong- 
ing to the Cs-subgroup included in the Coov-group, so that  the simplest surface 
could be described by the only set of  linear Coy critical points. Effectively, the 
equivariant  Morse  theory  can be checked in this case provided that  one has a good  
set of  linear critical points with 0, 1, 2 , . . .  unstable bending modes  (see ABC and 
A B C D  in Table 1). In fact this set must  correspond to the coefficients of  the 
Poincar6 polynomial  function (1 + 2 t ) . . .  (1 + (N - 1)t) given in Eq. (2), also 
called the Betti numbers:  (1, 2) for N = 3 and (1, 5, 6) for N = 4. 

When  several a toms are equivalent, some of  the N ! / 2  critical points are 
equivalent (by permutat ion of  equivalent atoms) and can be put  together: for 
example, there are two C~v-configurations (AABB and ABAB) and two D~h- 
configurations (ABBA and BAAB) including in fact 4 and 2 equivalent critical 
points, respectively (4 and 2 are the symmetry  numbers  of  the C~v and D~h critical 
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Table 1. Simplest surfaces for three and four atoms systems 

M. R6rat et al. 

Molecule Label Symmetry Index Unstable 
number CS CSP CSL modes 

ABC 

AB2 

A3 

ABCD 

ABC2 

ABa 

AEB2 

A4 

C~v 1 0 0 0 
2C®~ 1 2 1 0 17 

D~oh 1 0 0 0 
C®. 2 2 1 0 H 

Dceh 3 2 1 0 11u 
Dan 1 0 0 

C~. 1 0 0 0 
5Coo~ 1 2 1 0 1I 
6C~  1 4 2 0 211 

3C~  2 2 1 0 1I 
3C~  2 4 2 0 211 
C2v 1 0 0 

C~v 6 2 1 0 H 
C~. 6 4 2 0 21I 
D3h 1 0 0 

Do~h 2 0 0 0 
D~h 2 4 2 0 11g, H u 
Coo~ 4 2 1 0 H 
C®, 4 4 2 0 21/ 
D2h 1 1 1 Big 

D~h 12 2 1 0 Hg 
D4h 3 3 2 B2u, Eu 
D3h 4 1 0 A '~ 
Ta 2 0 

points, respectively, for A2Bz and given in Table 1). The smallest number of linear 
critical points is still equal to 4!/2 ( = 4 + 4 + 2 + 2) but the equivariant Morse 
inequalities are no longer satisfied in CSP (nor in CS) because we can no more have 
one minimum, five saddle points and six maxima with this set of twelve linear 
critical points. Planar or spatial critical points appear necessary. The sole non- 
linear symmetry group including other subgroups (kernels [-14]) and not included 
in  t h e  l i n e a r  o n e s  is D2h. Effect ively  O2h i n c l u d e s :  { C2h, "~2v f'(2' 4, 2)A, t"2v/-'(2' 4, 2)B, C (2°v ' 2, 2) ) 

c ,'-~ ( 4 )  and then t ~ , C2, C~ 2)a, C~2)B, C1 }2  that is all the non-linear symmetry groups of 

2 The exponents of the C2v groups mean how many atoms are respectively on the C 2 axis (A or B) and in 
the av and ad planes; for C, groups, the exponents mean how many A or B atoms are in crh plane. 
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,-,Io. 4, o) which is a kernel of D~oh. Then the O2h c r o s s  section must own A2B2 except ,-,2v 
one minimum at least and this minimum remains a critical point with possibly 
different indices in lower symmetry cross sections like Czh (which owns also 
D~h configurations) and in CS or CSP. 

A set of the compulsory present high symmetry critical points (2D~h, 2C~ov and 
1D2h for A z B 2 )  c a n  be sufficient to check equivariant Morse inequalities: no more 
critical points with a lower symmetry are necessary. In that way we report in 
Table 1 the simplest surfaces for three and four a tom systems. However, unstable 
modes have been obtained in checking the Morse theory in each cross section. 

Let us develop the AzB 2 example with the help of Table 1. 

1. In the linear ABBA, BAAB, AABB, ad ABAB configuration spaces, there is one 
minimum in each cross section (CSL indices are zeros for both Do~h and both 
C~v critical points). 

2. In the planar configuration space CSP: 

- one of the two Do~h critical points with symmetry number 2 is a minimum: 
t mo = 2; 

- one of the two C~ov critical points with symmetry number 4 is a saddle point: 
m'~ = 4; 

- the other Do~h and C~v critical points are maxima: m~ = 2 + 4; 
- the Ozh critical point with symmetry number  1 is a saddle point: M'~ = 1 and 
there is no more critical point: M ;  = M~ = 0. 

Then, we have 

2 M b + m ~ = 2 1 > l ,  

2M'~ - 2Mb + m'l - m~ = 4 ~> 4, 
t t t 2M~ - 2M'1 + 2Mb + m 2 - ml + mo = 2. 

The third inequality is already an equality and all the equivariant inequalities in 
CSP are checked. 

3. In the spatial configuration space: mo = 2, rn2 = 4, m4 = 2 + 4, Mo = 0, 
M1 = 1, M2 = 0. Because the molecule is stable in the plane, the planar critical 
point has the same indice in the spatial and planar configuration spaces; more, 
there is no spatial critical points. Equivariant inequalities in CS are also checked: 

Mo + m o  = 2 ~> 1, 

Mt  - Mo + ml - mo = - 1  ~> - 1 ,  

M2 -- M1 + Mo + m2 -- ma -t- 2too = 7/> 7, 

M3 -- M2 + M1 - M0 + m3 -- m2 -4- 2ml -- 2mo = --7 >~ --7, 

M 4  -- M3 + M 2  -- M I  + m4 - m3 + 2m2 - 2rnl + 3too = 19 >~ 19 

and 

- - r r t 7  -+- m6 - -  m5 + m4 -- m3 + m2 - -  ml + mo = 12 = 4!/2. 

Unstable modes of each critical point given in Table 1 allow to check the usual 
Morse inequalities in every cross sections. 

Still in the case of AzB2 (Table 1), it is also interesting to extend the "manifold 
with boundary" approach proposed for three-body systems by P. G. Mezey [15]. 
In order to avoid reflexion properties for four-body systems, the sets of collinear 
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Table 2. Simplest surface for C2H 2 with the stable acetylene and vinylidene critical points 

Molecule Label Symmetry Index Unstable 
number CS CSP CSL modes 

C2H2 
Acetylene 

Vinylidene 

D~h 2 0 0 
D~oh 2 4 2 
C ~  4 2 1 
C ~  4 4 2 
D2h 1 2 2 

C(242)c 2 0 0 2v 
C~ 4) 4 1 1 

0 
0 -/'/g, H u 
o // 
o 2// 

Big, B2u 

A' 

and now planar configurations have to belong to the boundary; the Betti numbers 
are those of a ball S 6 (1, 0, 0, 0, 0, 0, 1) when all the linear critical points unstable in 
the bending mode and all the planar critical points unstable in the spatial mode are 
bound in one artificial maximum point (see Appendix 2 in [6]). The last inequality 
becomes an equality and is a more restrictive condition than spatial equivariant 
inequalities; however several critical points must not be taken into account and 
a chemical information is lost. With the help of Table 1 (AzB2) , where o n e  D~h and 
two C~v critical points unstable in a bending mode have to be excluded and where 
the symmetry numbers remain unchanged for linear and planar configurations, 
we find: 

M ' ~ = 2 > ~ l ,  

M'~ - M~ = - 1  ~> - 1 ,  

M ~ - -  M~ + M'~ = 1 >~ 1, 

and with the artificial maximum point, we have 

ME . . . .  + M ~ = 2 ( = 1 + ( - 1 ) 6 ) .  

4 Application to C2H2 

Improvements in experimental techniques have led recently to progress in the 
understanding of the nature of vibrational energy flow in highly excited poly- 
atomic molecules; in particular the experimental spectrum of highly excited ground 
state acetylene has been obtained (see [93 and references therein). More C z H  2 is 
a AEB2 system which has been already studied at the ab initio level, in [16-19] for 
example. 

/t"(242)c'~ is a minimum on the We know that the vinylidene configuration ~,~2v J 
potential surface. In Table 2, we give the topological features of the simplest CzHz 
surface taking this fact into account. Of course, the appearance of a new minimum 
(vinylidene) also implies the appearance of a saddle point, "(4) t~ , to connect with the 
other minimum (acetylene). But also the D2h critical point is no longer a minimum 
in the C(2242)c cross section and becomes a critical point of index 2 in the 
configuration space. This point illustrates what Morse theory affords: chemistry 
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Table 3a-c.  Critical points of the whole C M M  analytical potential function (the origin of the energy 

Label Energy Symmetry Index Unstable modes 
(kcal/mol) number  CS CSP CSL 

Linear 
D~h 

Acetylene -404.8478 2 0 0 0 
C H H C  -238.1648 2 4 2 0 

Cmv 
C H C H  -312.1767 4 2 1 0 
C C H H  -298.9441 4 0 0 0 

-264.6077 4 0 0 0 
-261.9563 4 1 1 1 

T a b l e  3 b .  

Label Energy Symmetry Index 
(kcal/mol) number  CS CSP CSL 

Unstable modes 

i 1 ~ 1 ~  

D 2 h  

m 1 -342.2089 1 1 1 
m2 -303.6921 1 2 2 
s~ --282.0277 1 3 3 
m 3 --239.0487 1 2 2 
s2 -234.2989 1 3 3 

--117.2050 i 3 2 
--103.9763 1 4 3 

C2h 
--304.2629 2 1 1 
--303.6971 2 2 2 
--293.0016 2 1 1 
--263.0329 2 3 2 

c(O,4,o) 
20 

-268.4595 2 2 1 
-266.7693 2 3 2 
-259.5780 2 1 1 
-235.9114 2 2 2 
-125.2052 2 1 1 
-125.1769 2 2 2 
- 124.5527 2 2 2 
- 118.9852 2 3 3 

C(2,¢,~c 2v 
VinNidene -364.7715 2 0 0 

-318.8679 2 2 2 
-300.6937 2 1 1 
-282.0684 2 2 1 
-259.1257 2 1 1 
-228.6220 2 2 2 
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Table 3b. (contd.) 

M. R6rat et al. 

Label Energy Symmetry Index Unstable modes 
(kcal/mol) number  CS CSP CSL 

c(z, 4, 2)n 
2v 

c?) 

--279.2071 2 0 0 
--264.5826 2 0 0 
--259.5644 2 3 2 Ax,BI,B2 
-259.0118 2 2 1 Bj,B2 
-258.8738 2 1 1 A1 
-164.7697 2 2 2 Ax,B1 

-323.6922 4 0 0 
-297.3807 4 1 1 A' 
-291.9649 4 1 1 A' 
-281.9596 4 3 2 2A',A" 
-278.7357 4 1 1 A' 
--277.3772 4 1 1 A' 
--275.5633 4 2 2 2A' 
--263.6917 4 1 1 A' 
--258.6560 4 2 2 2A' 
--258.2498 4 2 2 2A' 
--227.4199 4 3 3 3A' 

Table 3c. 

Label Energy Symmetry Index Unstable modes 
(kcal/mol) number  CS CSP CSL 

Spatial 
c ( o , 2 , 2 )  

2v 

C2 

C~2)R 

C~2) c 

C1 

--259.2044 2 2 B1,Bz 
--228.4728 2 3 A1,A2,B2 
-110.2010 2 3 A1,B1,B z 
-106.6664 2 4 2A1,A2, B2 

-266.7948 4 2 A,B 

-277.5606 4 1 A" 
-277.3712 4 2 A', A" 
--273.7274 4 3 A',2A" 
--164.4762 4 3 2A',A" 

--289.9805 4 1 A' 
-258.5919 4 2 A',A" 
-226.4149 4 4 2A' ,2A" 

-288.6051 8 2 2A 
-- 275.3240 8 3 3A 
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Table 4. Numbers n/m of critical points for each index value in the spatial/planar configuration 
spaces and for different energy bands (permutation of equivalent atoms are not taken into 
account) 

Energy/Index 0 1 2 3 4 5 6 

- 100 
0/0 1/1 2/3 3/2 2/0 0/0 0/0 

-150 
0/0 0/0 1/1 1/0 0/0 0/0 0/0 

- 200 
0/0 0/0 3/4 3/2 2/0 0/0 0/0 

--250 
4/4 12/13 11/7 7/1 0/0 0/0 0/0 

- 300 
l/1 3/4 4/3 0/0 0/0 0/0 0/0 

- 350 
1/1 0/0 0/0 0/0 0/0 0/0 0/0 

-- 400 
l/1 0/0 0/0 0/0 0/0 0/0 0/0 

introduces a local perturbation (a new minimum) and Morse theory gives the 
global answers of the potential surface. We just selected in Table 2 the simplest 
answer according to a principle of least complexity. 

In this point, we studied three analytical potentials for C2Hz given in the 
literature. The potential functions are eventually Morsified by adding a long-range 
penalty function which converts repulsive valleys and ridges onto ordinary critical 
points (see [6], Appendix 1) and all the inequalities of Sect. 2 linking the critical 
points must be checked for N = 4. 

We first search for minima belonging to high-symmetry cross sections like 
D~h or Dzh with pseudo-Newton methods (see El, 2]), and saddle points between 
themselves with the "chain" method [3, 4]; then we release gradually symmetry 
constraints while checking usual Morse inequalities, the configuration subspaces 
being balls ~"  and torus Y-" with Betti numbers (1 ,0 , . . .  ,0) and (C °, 
C, ~, . . . ,  C,"), respectively. In the absence of strong symmetry constraints like in 
CSP and CS (i.e. for C~ 4) and C1 configurations), we use simulated annealing 
strategies [5] on the potential V or its gradient, in order to find not only missing 
minima but also any kind of critical points, until the equivariant Morse inequalities 
are satisfied as well as the Morse inequalities in the "manifold with boundary" 
proposed by Mezey [6, 15]. 

The critical points found for the analytical potential proposed by Carter and 
coll. (CMM) [7] are summarized in Table 3. We retrieve the vinylidene and 
acetylene minima and also three of the four linear critical points of Table 2 with the 
same indices: two D~h critical points with indices 0 and 4, and one Co~v with index 
2 in CS. On the contrary, even if the three CCHH critical points can be collapsed in 
only one minimum (two minima separated by a saddle point), the index 0 is far 
from the expected one 4, given in Table 2. The number of critical points becomes 
also very large (62 including 7 Dzh, 11 C~ 4), etc.) and 14 spatial critical points 
appear. The energy distribution of the critical points given in Table 4 for the CMM 
analytical potential is much higher than the energy of the few well known chemical 
configurations; this is probably due to the polynomial form of the potential 
function responsible for a large number of pre-dissociated configurations. 
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Fig. 1. D2h cross section of the C M M  potential function 

Fig. 2. D2h cross section of the HC C  potential function 

This large number of critical points is also found with another analytical potential 
(HCC) [8], based on a similar polynomial approach. Figures 1 and 2 give the 
iso-energy lines (from -300 to + 600 kcal/mol) obtained from CMM and HCC 
potential functions in the D2h cross section. Comparatively to Fig. 1, we guess in 
Fig. 2 one more maximum and then one more saddle point, very high in energy, 
pushing out the other more realistic saddle point. Figure 3 is a zoom of Figure 
1 around its lowest minimum: three minima and two saddle points appear. There 
are actually seven critical points in D2h cross section (see Table 3b), very close 
in geometries, but not at all in energies. This set of seven critical points could for- 
mally be contracted to a single minimum in the cross section, e.g. at energy 
- 342.2089 kcal/mol, and with index 1 (Big) in the whole configuration space. The 
other DZh critical points are pairs different in the stability of only one mode A o of 
the group D2h and then cancel themselves by the contraction procedure [20]. 

The third potential studied (HL) 1-9] proceeds from a radically different analyti- 
cal approach. The authors claim the advantages of a small number of "smooth" 
(almost monotonous) functions to avoid spurious high-energy features. Actually 
very few critical points are generated. Unfortunately, the HL potential still exhibits 
several deficiencies, at least from the topological standpoint. For example, the 
superimposition of C and H atoms is not forbidden and the four kinds of linear 
species are not always separated by high-energy barriers! Only two linear config- 
urations are obtained: HCCH (acetylene, index 0) and CCHH (index 2). More the 
dissociative channel C2H + H corresponds to a critical orbit (a dense set of critical 
points) because the potential becomes insensitive to the CCH angle in this case. 
Therefore, not only the Morse theory cannot be checked but also the model is 
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Fig. 3. Zoom of the CMM 
D2h cross section: five of the 
seven critical points are 
represented (see Table 3b) 

unsuitable for molecular dynamics at the approach of the lowest dissociative 
channel. Discarding these defects, the potential surface is close to the simplest 
surface including the vinylidene as a minimum (Table 2). However the out-of-plane 
mode of the D2h critical point is unstable (index equal to 3 instead of 2). This implies 
the emergence of a non-planar ~J2v(~(°'2' 2) critical point with index two. 

Standard (i.e. SCF closed shell) semi-empirical calculations (MNDOC)  give the 
same set of critical points and indices than the H L  potential and restore the 
"missing" linear critical points C H C H  and C H H C  (although poorly described 
energetically as closed shell species). This rough agreement indicates that it could 
be the topology of the genuine potential for C2H2. However, the ~.-¢2v/~(°'2'2) critical 
point is not a minimum as found by ab initio including d-orbital [17]. Also the 
M N D O  heat of reaction and energy barrier to isomerization process acetylene 
(0. k c a l / m o l ) ~  C~ 4) (94.11 kcal/mol)~--~vinylidene (63.78 kcal/mol) are poor  with 
respect to a decisive ab initio approach [-16]. In spite of the absence of d-orbitals, 
semi-empirical energies become fairly acceptable at the M N D O - C I  level involving 
up to the 10 molecular orbitals of the valence shell 3. Moreover, the C~2°; 2, 2) critical 
point becomes a minimum in accordance with ab initio [17]. According to Morse 
theory, this implies the emergence of other critical points, not searched for in [17]. 
Three other critical points are found on the M N D O - C I  surface: C2 and 
C~ 2)c saddle points toward acetylene and vinylidene respectively, and a Ca critical 
point of index 2. However, they are so close in energy and geometry that they can 

a The molecular orbitals come from a moderately polarized SCF scheme involving a large number of 
open shells. About 80 microstates are then extracted from the 63504 ones generated by the CAS-CI. The 
selection refers to a small set of representative microstates and enlarges it by a perturbation technique. 
This procedure pick out most of the specific effects of a CI and avoid an overestimate of the correlation 
energy. Method implemented as a standard in the AMPAC 5.0 package [10b]. 
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be contracted in a single C(2°~ ' 2, 2) critical point with an index equal to two like in the 
MNDOC calculations. This cluster of critical points sounds doubtful to common 
sense. Should d-orbitals be a necessity is an open question at this stage. MNDO-CI 
results and those of reference [17] for the singlet state (see also [16, 18, 19]) are 
collected in Table 5. Energies are in reasonable agreement with regards to the 
wanderings of analytical potentials at high energies. The only topological disagree- 
ment concerns the Big mode of the Ozh critical point. Topological consistency 
implies the existence of a C2h singlet critical point on the ab initio surface (the 
C2h triplet found in [17] cannot be an outgoing saddle point for the D2h structure 
and does not belong to the ground state potential). Under this hypothesis, the 
ab initio surface should be a little more complex than the MNDO-CI one. 

The open question of the topology in the large of the singlet ground state of 
C2H2 has recently been investigated at a reasonably good ab initio level [21]. 
Results indicate that a C2h singlet critical point with index 3 does exist (the Dzh has 
an index equal to 2), as topologically deduced from the early study of Binkley [-17]. 
A cluster of critical points is also found in the ,~2vr(°'2'2) region, as observed at the 
MNDO-CI level. This point incidently signifies that d-orbitals are not basically 
required for a semi-empirical study of this potential surface, in opposite to ab initio 
approaches where they act strongly as polarization functions. Adding the three 
other linear critical points to the set of critical points found by Halvick and coll. 
[21], we obtain a surface of C2H2 satisfying the planar and spatial equivariant 
Morse theory: all the inequalities of Sect. 2 are verified for N = 4. 

At end, the genuine topology of the singlet ground state of C2H2 could stand 
at a medium level of complexity: more than the simplest one (Table 2), more than 
the oversmoothed HL analytical approach, but much less than the CMM or 
HCC ones. 

5 Conclusion 

This work introduces the concept of topological complexity of a potential surface 
in term of its number of critical points. The basic mathematical tool is the Morse 
theory applied to potential functions in chemistry. Either "standard" or "equi- 
variant" forms of the Morse theory are used, depending on the part of the potential 
under study (from numerous symmetry-constrained cross sections to the whole 
configuration space). We illustrate how such general theorems, apparently far away 
from "normal" problems in chemistry, do interfere strongly in the numerical 
approaches to potential surfaces (semi-empirical, ab initio and analytical fits). 

Following a principle of least complexity, we first derive what should be the 
simplest potential surfaces for general molecules with three and four atoms and it 
could be done also for molecules with more than four atoms. Such hypothetical 
surfaces play the role of germs for actual surfaces. Then we show that the 
introduction of a new local property (the existence of a critical point with a known 
index) has global consequences. Hence again these consequences may be predicted 
and classified on the basis of a criterion of topological complexity. This provides 
a decisive help either to drive further on a numerical prospection or to check the 
plausibility of an analytical fit. 

The case of the singlet ground state of C2Hz is taken as an example of current 
interest. Three typical analytical potentials previously proposed in the literature 
are analysed (and criticized) on non intuitive topological grounds. Semi-empirical 
and ab initio surfaces are prospected in turn, up to topological completion. Finally 
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we s u r r o u n d  the  m a i n  t o p o l o g i c a l  fea tures  s p a n n i n g  these  l a te r  a p p r o a c h e s .  Th i s  
t o p o l o g i c a l  f r a m e w o r k  gives the  u n a v o i d a b l e  ske l e ton  o f  any  k i n d  of  ana ly t i ca l  fit 
to be  a t t e m p t e d  in the  future.  
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